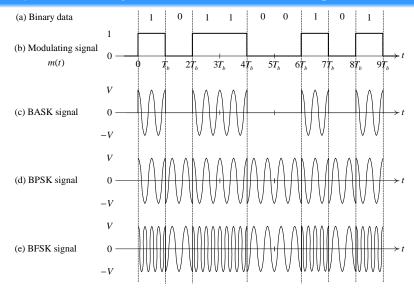
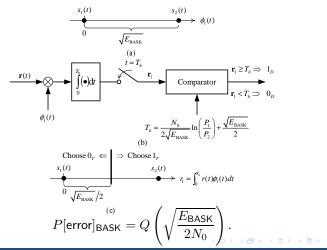
A First Course in Digital Communications Ha H. Nguyen and E. Shwedyk

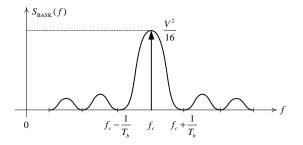

February 2009

A First Course in Digital Communications

Introduction

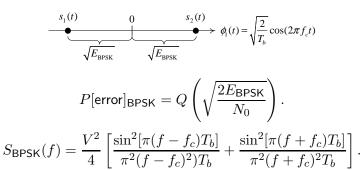

- Baseband transmission is conducted at low frequencies.
- Passband transmission happens in a frequency band toward the high end of the spectrum.
- Satellite communication is in the 6–8 GHz band, while mobile phones systems are in the 800 MHz–2.0 GHz band.
- Bits are encoded as a variation of the *amplitude*, *phase* or *frequency*, or some combination of these parameters of a sinusoidal *carrier*.
- The carrier frequency is much higher than the highest frequency of the modulating signals (or messages).
- Shall consider binary *amplitude-shift keying* (BASK), binary *phase-shift keying* (BPSK) and binary *frequency-shift keying* (BFSK): Error performance, optimum receivers, spectra.
- Extensions to *quadrature phase-shift keying* (QPSK), offset QPSK (OQPSK) and minimum shift keying (MSK).

Examples of Binary Passband Modulated Signals

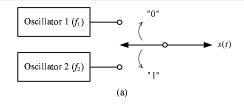

Binary Amplitude-Shift Keying (BASK)

$$\begin{cases} s_1(t) = 0, & ``0_T''\\ s_2(t) = V \cos(2\pi f_c t), & ``1_T'' , 0 < t \le T_b, f_c = n/T_b \end{cases}$$

PSD of BASK


$$\begin{split} S_{\mathsf{BASK}}(f) &= \frac{V^2}{16} \bigg[\delta(f-f_c) + \delta(f+f_c) + \\ &\quad \frac{\sin^2[\pi T_b(f+f_c)]}{\pi^2 T_b(f+f_c)^2} + \frac{\sin^2[\pi T_b(f-f_c)]}{\pi^2 T_b(f-f_c)^2} \bigg]. \end{split}$$

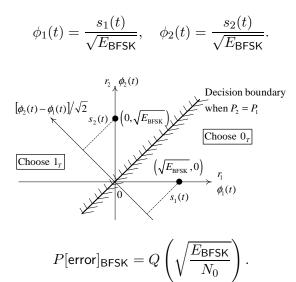
Approximately 95% of the total transmitted power lies in a band of $3/T_b$ (Hz), centered at f_c .


Binary Phase-Shift Keying (BPSK)

$$\left\{ \begin{array}{ll} s_1(t) = -V\cos(2\pi f_c t), & \text{if "}0_T"\\ s_2(t) = +V\cos(2\pi f_c t), & \text{if "}1_T" \end{array} \right., \quad 0 < t \leq T_b,$$

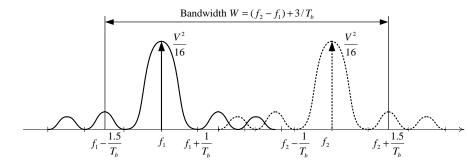
Similar to that of BASK, but no impulse functions at $\pm f_c$.

Binary Frequency-Shift Keying (BFSK)

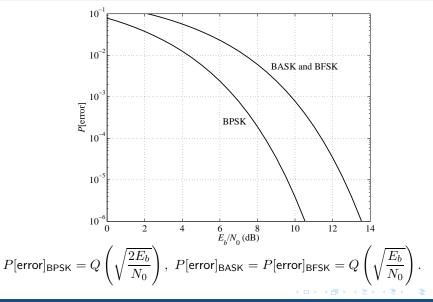

$$\begin{cases} s_1(t) = V \cos(2\pi f_1 t + \theta_1), & \text{if } "0_T" \\ s_2(t) = V \cos(2\pi f_2 t + \theta_2), & \text{if } "1_T" \end{cases}, \quad 0 < t \le T_b.$$

(i) Minimum frequency separation for *coherent* orthogonality $(\theta_1 = \theta_2)$:

$$(\Delta f)_{\min}^{[\text{coherent}]} = \frac{1}{2T_b}$$

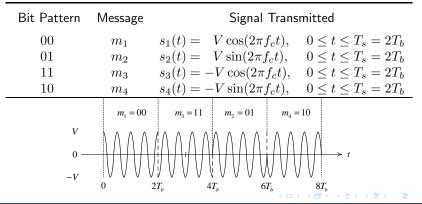

(ii) Minimum frequency separation for *noncoherent* orthogonality $(\theta_1 \neq \theta_2)$:

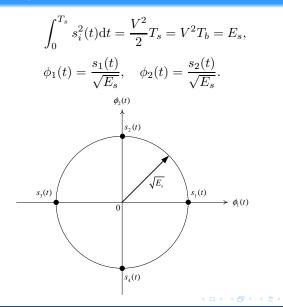
$$\left(\Delta f\right)_{\min}^{[\text{noncoherent}]} = \frac{1}{T_b}$$



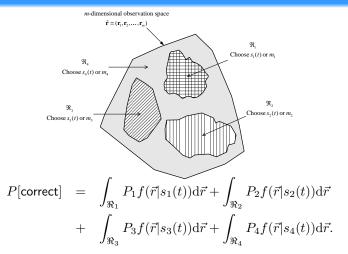
PSD of BFSK

$$\begin{split} S_{\mathsf{BFSK}}(f) &= \frac{V^2}{16} \bigg[\delta(f-f_2) + \delta(f+f_2) + \frac{\sin^2[\pi T_b(f+f_2)]}{\pi^2 T_b(f+f_2)^2} + \frac{\sin^2[\pi T_b(f-f_2)]}{\pi^2 T_b(f-f_2)^2} \bigg] \\ &+ \frac{V^2}{16} \bigg[\delta(f-f_1) + \delta(f+f_1) + \frac{\sin^2[\pi T_b(f+f_1)]}{\pi^2 T_b(f+f_1)^2} + \frac{\sin^2[\pi T_b(f-f_1)]}{\pi^2 T_b(f-f_1)^2} \bigg] \end{split}$$

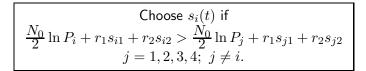

Performance Comparison of BASK, BPSK and BFSK

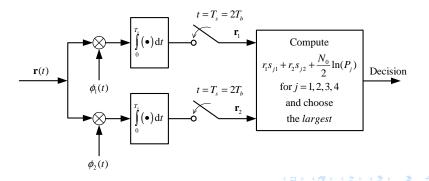

Quadrature Phase Shift Keying (QPSK)

• Basic idea behind QPSK: $\cos(2\pi f_c t)$ and $\sin(2\pi f_c t)$ are orthogonal over $[0, T_b]$ when $f_c = k/T_b$, k integer \Rightarrow Can transmit two different bits over the same frequency band at the same time.

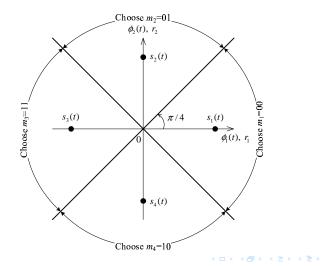

• The symbol signaling rate (i.e., the *baud rate*) is $r_s = 1/T_s = 1/(2T_b) = r_b/2$ (symbols/sec), i.e., *halved*.

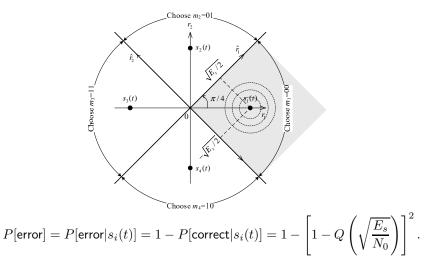
Signal Space Representation of QPSK



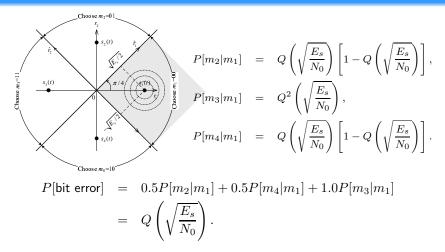

Optimum Receiver for QPSK

Choose $s_i(t)$ if $P_i f(\vec{r}|s_i(t)) > P_j f(\vec{r}|s_j(t)), \ j = 1, 2, 3, 4; \ j \neq i.$

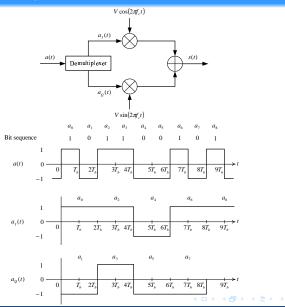

Simplified Decision Rule and Receiver Implementation

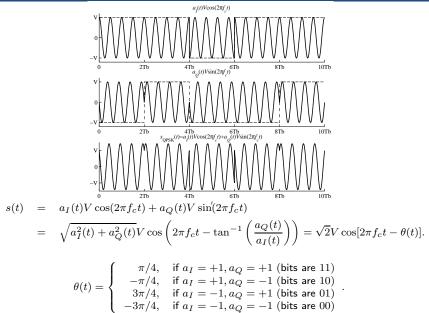


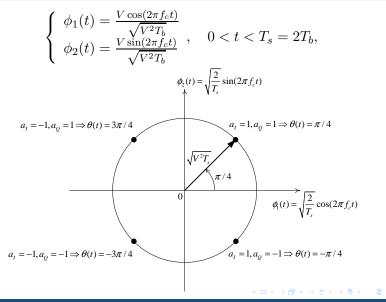
Minimum-Distance Receiver


Choose
$$s_i(t)$$
 if $(r_1 - s_{i1})^2 + (r_2 - s_{i2})^2$ is the smallest

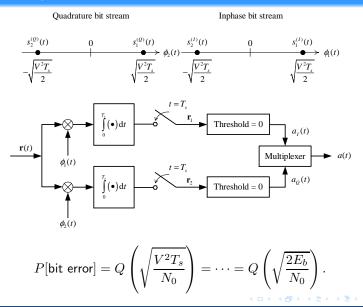
Symbol (Message) Error Probability of QPSK



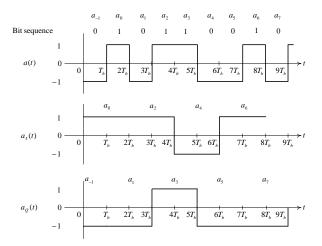

Bit Error Probability of QPSK


Gray mapping: *Nearest neighbors* are mapped to the bit pairs that differ in only one bit.

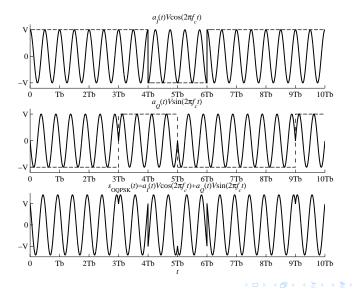
An Alternative Representation of QPSK



Signal Space Representation of QPSK

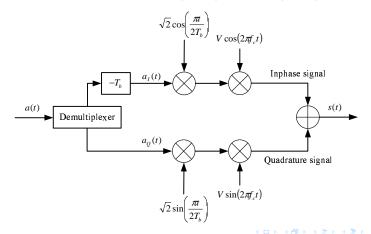


Receiver Implementation of QPSK

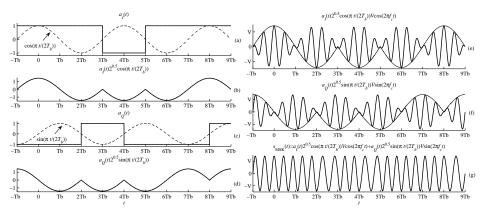


Offset Quadrature Phase Shift Keying (OQPSK)

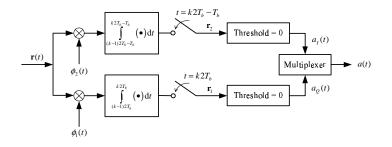
• In OQPSK the $a_I(t)$ and $a_Q(t)$ bit streams are offset by one bit interval T_b .



Example of an OQPSK Signal



Minimum Shift Keying (MSK)

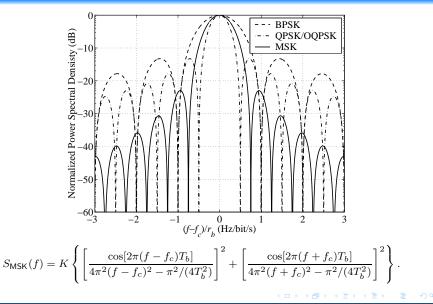

- Both QPSK and OQPSK signals have sudden jumps.
- MSK eliminates the jumps altogether by applying weighting functions to the carriers $V \cos(2\pi f_c t)$ and $V \sin(2\pi f_c t)$.

Generation of an MSK Signal

Block Diagram of MSK Receiver

$$\begin{split} \phi_1(t) &= \left[\sqrt{2}\sin\left(\frac{\pi t}{2T_b}\right)V\sin(2\pi f_c t)\right] \middle/ \sqrt{V^2 T_b},\\ \phi_2(t) &= \left[\sqrt{2}\cos\left(\frac{\pi t}{2T_b}\right)V\cos(2\pi f_c t)\right] \middle/ \sqrt{V^2 T_b}.\\ P[\text{bit error}] &= Q\left(\sqrt{\frac{2E_b}{N_0}}\right), \quad E_b = V^2 T_b \text{ is the energy per bit.} \end{split}$$

A Mathematical Description of MSK Signals


$$s(t) = a_I(t)\sqrt{2}\cos\left(\frac{\pi t}{2T_b}\right)V\cos(2\pi f_c t) + a_Q(t)\sqrt{2}\sin\left(\frac{\pi t}{2T_b}\right)V\sin(2\pi f_c t)$$
$$= A\cos(2\pi f_c t - \theta).$$

$$A = \left[a_I^2(t)2V^2\cos^2\left(\frac{\pi t}{2T_b}\right) + a_Q^2(t)2V^2\sin^2\left(\frac{\pi t}{2T_b}\right)\right]^{\frac{1}{2}} = \sqrt{2}V$$

$$\theta = \tan^{-1} \left\{ \frac{a_Q(t) \sin\left(\frac{\pi t}{2T_b}\right)}{a_I(t) \cos\left(\frac{\pi t}{2T_b}\right)} \right\} = \tan^{-1} \left\{ \pm \tan\left(\frac{\pi t}{2T_b}\right) \right\} = \pm \frac{\pi t}{2T_b}.$$
$$\Rightarrow s(t) = \sqrt{2}V \cos\left[2\pi \left(f_c \pm \frac{1}{4T_b}\right)t\right].$$

An MSK signal is of either frequency $f_2 = f_c + \frac{1}{4T_b}$ or $f_1 = f_c - \frac{1}{4T_b} \Rightarrow$ can be viewed as *frequency-shift keying* signal with continuous phase.

Power Spectral Density

Modulation in 2G Cellular Wireless Systems

	GSM/DCS-1800	IS-54/136	PDC	1S-95				
Region	Europe	North America	Japan	North America				
Frequency band (MHz)	900/1800/1900	800/1900	700/1500	800/1900				
Multiple access	F/TDMA	F/TDMA	F/TDMA	F/CDMA				
Carrier spacing (kHz)	200	30	25	1250				
Modulation	GMSK	OQPSK	OQPSK	BPSK/QPSK				
Speech coding (kb/s)	VSELP (HR-5.6) RPE-LTP (FR-13) ACELP (EFR-12.2)	VSELP (FR-7.95) ACELP (EFR-7.4)	PSI-CELP (HR-3.45) VSELP (FR-6.7)	QCELP (8, 4, 2, 1) RCELP (EVRC)				
Frame size (ms)	4.6	40	20	20				
Channel coding (convolution code)	Rate 1/2	Rate 1/2	Rate 1/2	Rate 1/2 or 1/3				
HR: half-rate codec; FR: full-rate codec; EFR: enhanced full-rate codec; EVRC: enhanced variable								

rate codec

An adaptive multitate (AMR) codec for GSM is currently being standardized by ETSI

Table 1. *Air interface characteristics of 2G systems.*

Modulation in 3G CDMA-Based Cellular Systems

								CDMA I
Multiple-access	FDD: DS-CDMA TDD: T/CDMA	FDD: DS-CDMA TDD: T/CDMA	FDD: DS-CDMA TDD: T/CDMA	FDD: DS-CDMA TDD: DS-W-CDMA(FL) DS-S-TDMA (RL)	FDD: DS-CDMA TDD: T/CDMA	TDMA/CDMA	DS-CDMA	DS-CDMA
Duplex scheme	FDD/TDD	FDD/TDD	FDD/TDD	W-CDMA FDD mode: FDD S-TDMA TDD mode: TDD	FDD/TDD	TDD	FDD	FDD
Chip rate (Mc/s)	FDD: 4.096/ 8.192/16.384 TDD: 4.096	1.2288xN Mcps (NX)	FDD: 4.096/8.192/ 16.384 TDD: 4.096	4.096/8.192/ 16.384	1.024/4 096/ 8.192/16 384	1.1136	1.024/4.096/ 8.192/16.384	0.9216/3.6864/ 14.7456
Frame length	10 ms	20/5 ms	10 ms	10 ms	10 ms	5 ms	10 ms	10 ms
Channel coding	Convolutional coding (rate 1/2, 1/3, K = 9); optional outer RS coding (rate TBD)	Convolutional coding (R=112, 1/3, 1/4, K = 9); Turbo code of R=1/2, 1/3, 1/4 and $K = 4$ (pre- ferred for date transmission over 14.4 kb/s on supplemental channel)	Convolutional coding (rate 1/2, 1/3, K = 9); or point outer RS coding ($R = 4/5$)	Convolutional coding (FL: R = 112, K = 7, RL: R = 1/3, K = 9)	Convolutional coding (R = 1/2, 1/3, K = 9); Turbo code of $R = 1/3$ K = 3 (data transmission over 32 kb/s)	Convolutional coding (R = 3/4, K = 9); optional outer RS code; Turbo code of K = 4, R = 1/2 (preferred for data rate greater than 19.2 kb/s NRT service)	Convolutional coding (R = 1/2, 1/3, 1/4, 1/6, K = 9), select: able FEC for low rate data; Turbo code of R = 1/3 and $K = 3for high ratedata and packetdata$	1/6); optional outer (47, 41) RS code
Interleaving	Inter/intraframe	Intraframe	Inter/intraframe	Block interleaving (no details given)	Multistage intra or inter- frame	Interframe,	Intraframe	Intraframe
Data modulation	FDD: FL: QPSK, RL: Dual-channel- QPSK; TDD: QPSK (RL&FL)	QPSK (FL) BPSK (RL)	FDD: FL: QPSK, RL: Dual-channel QPSK; TDD: QPSK (RL&FL)	QPSK	FDD: FL: QPSK, RL: Dual-chan- nel QPSK TDD: QPSK	DQPSK, and 16QAM for high data rate	QPSK (FL) BPSK (RL)	FL: QPSK RL: BPSK