
Chapter 2

PIC

Architecture &

Assembly

Language

Programming

0-2

The WREG Register

• WREG  working register

• The vast majority of PIC register are 8-bit

register.

0-3

WOVLW Instruction

• Move an 8-bit literal value into WREG register.

 MOVLW K

• The L stands for literal, which means, literally a

number must be used; similar to the immediate

value in other microprocessors.

 MOVLW 87H

0-4

ADDLW Instruction

 ADDLW K

• ADD a literal value to WREG.

 MOVLW 25H

 ADDLW 34H

 ;WREG = 59H

Figure 2-1. PIC WREG and ALU
Using Literal Value

0-6

 MOVLW 12H

 ADDLW 16H

 ADDLW 11H

 ADDLW 43H

 MOVLW 7F2H

 MOVLW 60A5H

0-7

The PIC File Register

• Data memory space vs. Program memory space

• The data memory is also called the file register.

• The file register data RAM has a byte-size width, just

like WREG.

• (a) Special Function Register (SFR)

 (b) General-Purpose Register (GPR)

 or General-Purpose RAM (GP RAM)

0-8

SFRs

• dedicated to specific functions such as ALU status,

timers, serial communication, I/O ports, ADC, and so

on.

• The more timers we have in a PIC chip, the more SFR

registers we will have.

0-9

GPRs

• A group of RAM locations in the file register that are

used for data storage and scratch pad.

• The space that is not allocated to SFRs typically is

used for general-purpose registers.

• GP RAM vs. EEPROM in PIC chips

• GPRs are used by the CPU for internal data storage.

• EEPROMs are considered as an add-on memory.

0-10

File register size for PIC chips

Figure 2-2. File Registers of
PIC12, PIC16, and PIC18

0-12

File Register and Access Bank

• The PIC18 family can have a maximum of 4096 (4K)

bytes for the file register.

• has the addresses of 000-FFF.

• is divided into 256-byte banks.

• A maximum of 16 banks (16256 = 4096)

• Every PIC18 family member has at least one bank for

the file register.

• This bank is called the access bank.

• The access bank is the default bank when we power up

the PIC18 chip.

0-13

• The 256 access bank is divided into two equal sections

of 128 bytes.

• The 128 bytes from locations 00H to 7FH are set aside

for general-purpose registers.

• The other 128 bytes from locations F80H to FFFH are

set aside for special function registers.

• A file register of more than 256 bytes will necessitate

bank switching.

File Register and Access Bank

Figure 2-3. File Register for PIC18
Family

Figure 2-4. Special Function
Registers of the PIC18 Family.

0-16

MOVWF Instruction

• Move (in reality, copy) the source register of WREG

(W) to a destination in the file register (F).

• Mnemonic instructions.

 MOVLW 55H

 MOVWF PORTB

 MOVWF PORTC

 MOVWF 2H

 MOVWF 3H

• Notice that you cannot move literal values directly into

the general-purpose RAM locations in the PIC18.

0-18

ADDWF Instruction

• ADDWF fileReg, D

• Adds together the contents of WREG and a file

register locations.

• D indicates the destination bit. If D=0, the destination

is WREG. If D=1, then the result will be placed in the

file register.

• The PIC assembler allows us to use the letters W or F

instead of 0 or 1 to indicate the destination.

Figure 2-5. WREG, fileReg, and
ALU in PIC18

0-21

COMF fileReg, d

• Complements the contents of fileReg and places the

result in WREG or fileReg.

• This is a example of “Read-Modify-Write”.

0-22

• Decrements the contents of fileReg and places the

result in WREG or fileReg.

 MOVLW 3

 MOVWF 20H

 DECF 0x20, F

 DECF 0x20, F

 DECF 0x20, F

DECF fileReg, d

0-23

• Is intended to perform MOVFW.

• The only time we let d=‘F’ (to copy data from fileReg

to itself) is when we want to affect the flag bits of the

status register.

MOVF fileReg, d

0-24

0-25

• Copies data from one location in fileReg to another

location of fileReg.

MOVFF instruction

0-27

PIC18 Status Register

• Also called flag register.

• Five flags are called conditional flags.

• C, there is a carry out. Usually for unsinged number.

• DC, a carry from D3 to D4. (or AC flag)

• Z, zero.

• OV, overflow. Usually for singed number.

• N, negative. Usually for unsinged number.

Figure 2-7. Bits of Status Register

0-33

Data Format representation

• There are four ways to show hex numbers.

 MOVLW 99H

 MOVLW 0x99

 MOVLW 99

 MOVLW h’99’

• Binary numbers

 MOVLW B’10011001’

0-34

Data Format representation

• There are two ways to show decimal numbers.

 MOVLW D’12’

 MOVLW .12

• ASCII character

 MOVLW A’2’

 MOVLW ’2’

0-35

Assembler Directives

• Instructions tell CPU what to do.

• Directives (pseudo instructions) give directions to the

assembler.

• EQU associates a constant number with a data or an

address label.

 COUNT EQU 25H

 MOVLW COUNT

• SET and EQU directives are identical. The only

difference is the value assigned by the SET may be

reassigned later.

0-36

Assembler Directives

• ORG  the beginning of the address.

• END  the END of the source (asm) file.

• LIST  the assembler the specific PIC chip for which

the program should be assembled.

 LIST P=18F452

• #include  libraries used for compiling.

• Radix  numbering system is hexadecimal or decimal.

0-37

PIC Assembly Programming

• Machine language

• Assembly language

• Assembler, objective code

• Low-level language

• Complier , high-level language

0-38

Structure of Assembly Language

[label] mnemonic [operands] [;comment]

Figure 2-8. Steps to Create a
Program

Figure 2-9. Program Counter in
PIC18

Figure 2-10. PIC18 On-Chip Program
(code) ROM Address Range

PIC18 Program ROM Space

• The PIC microcontroller wakes

up at memory address 0000

when it is powered up.

• We achieve this by using the

ORG statement in the source

program as shown earlier.

Figure 2-12. Program ROM Width
for the PIC18

• Little endian  The lower byte goes to the low memory

location and the high byte goes to the high memory

address.

• Big endian

Figure 2-13. PIC18 Program ROM
Contents for Program 2-1 List File

Figure 2-14. von Neumann vs.
Harvard Architecture

0-50

Instruction Size

• MOVLW

• ADDLW

0-51

Instruction Size

• MOVWF

• MOVFF

0-52

Instruction Size

• GOTO

0-53

RISC Architecture

1. Fixed instruction size

2. A large number of registers

3. A small instruction set

4. 95% instructions are executed with only one clock

cycle

5. Separate buses for data and code (Havard architecture)

6. Hardwire method. (no microinstructions)

7. Load/store architecture

Figure 2-15. SFR Window in MPLAB
Simulator

Figure 2-16. File Register (Data RAM)
Window in MPLAB Simulator

Figure 2-17. Program (Code)
ROM Window in MPLAB Simulator

