Chapter 4

PIC I/O Port Programming

Pearson International Edition

PIC Microcontroller and Embedded Systems Using Assembly and C for PIC18

MUHAMMAD ALI MAZIDI Rolin D. McKinlay Danny Causey

I/O Port Pins

- PIC18 has five ports; PORTA, PORTB, PORTC, PORTD, and PORTB.
- Each port has three SFRs associated with it; PORTx, TRISx (Tristate), and LATx (Latch).

Table 4-2: Ports' SFR		
Addresses for PIC18F458		
FUL	Auuress	
PORTA	F80H	
PORTB	F81H	
PORTC	F82H	
PORTD	F83H	
PORTE	F84H	
LATA	F89H	
LATB	F8AH	
LATC	F8BH	
LATD	F8CH	
LATE	F8DH	
TRISA	F92H	
TRISB	F93H	
TRISC	F94H	
TRISD	F95H	
TRISE	F96H	

Figure 4-1. PICF458 Pin Diagram

TRIS Register Role

- The TRISx SFR is used solely for the purpose of making a given port an input or output port.
- The data will not go from the port register to the pins of the PIC unless we activate the TRIS bit (set it to zero)

TRIS Register Role

The following code will toggle all 8 bits of Port B. MOVLW **0X0** MOVWF TRISB L1 MOVLW 0X55 MOVWF PORTB CALL DELAY MOVLW 0X55 MOVWF PORTB DELAY CALL GOTO L1

Figure 4-2. CMOS States for P and N Transistors

Figure 4-3. Outputting (Writing) 0 to a Pin in the PIC18

Figure 4-4. Outputting (Writing) 1 to a Pin in the PIC18

TRIS Register Role

- To make a port an input port, we must first put 1s into the TRISx register.
- Notice that 0 stands for out and 1 for in.

	CLRF	TRISB
	SETF	TRISC
L2	MOVF	PORTC, W
	ADDLW	5
	MOVWF	PORTB
	BRA	L2

Figure 4-5. Inputting (Reading) 0 from a Pin in the PIC18

Figure 4-6. Inputting (Reading) 1 from a Pin in the PIC18

Dual Role of Ports A and B

Table 4-3: Port A Alternate Functions

Function
AN0/CVREF
AN1
AN2/VREF-
AN3/VREF+
T0CKI
AN4/SS/LVDIN
OSC2/CLKO

Table 4-4: Port B AlternateFunctions

Bit	Function
RB0	INT0
RB1	INT1
RB2	INT2/CANTX
RB3	CANRX
RB4	
RB5	PGM
RB6	PGC
RB7	PGD

Dual Role of Ports C and D

Table 4-5:	Port (C Alternate
Functions		

Function
T1OSO/T1CKI
TIOSI
CCP1
SCK/SCL
SDI/SDA
SDO
TX/CK
RX/DT

Table 4-6:	Port	D	Alternate
Functions			

Bit	Function
RD0	PSP0/C1IN+
RD1	PSP1/C1IN-
RD2	PSP2/C2IN+
RD3	PSP3/C2IN-
RD4	PSP4/ECCP1/P1A
RD5	PSP5/P1B
RD6	PSP6/P1C
RD7	PSP7/P1D

0-13

PORT	PORTB	PORTC	PORTD	PORTE	Port Bit
RA0	RB0	RC0	RD0	RE0	D0
RA1	RB 1	RC1	RD1	RE1	D1
RA2	RB2	RC2	RD2	RE2	D2
RA3	RB3	RC3	RD3		D3
RA4	RB4	RC4	RD4		D4
RA5	RB5	RC5	RD5		D5
	RB6	RC6	RD6		D6
·	RB7	RC7	RD7		D7

Table 4-9: Single-Bit Addressability of Ports for PIC18F458/4580

Read-After-Write (RAW) Dependency

• We need a NOP (or some other instruction) to make sure that the data is written into WREG before it is read for outputting to port B.

	CLRF	TRISB
	SETF	TRISC
L4	MOVF	PORTC, W
	NOP	
	MOVWF	PORTB
	BRA	L4

Pipeline for Read Followed by Write I/O

Fetch 1 D R P W	INSTRUCTION MOVF PORTC,W ;Read PORTC into WREG
Fetch 2 D R P W	MOWVE PORTE ;Write WREG to PORTE
The RAW (Read – After – Write) for two consecutive i	instructions.
	INSTRUCTION
Fetch 1 D R P W	MOVE PORTC W
Fetch 2 D N N N F	NOP ;Bubble in Pipeline MOWVF PORTB
Fetch 2 D N N N Fetch 3 D R P W	NOP ;Bubble in Pipeline MOWVF PORTB
Fetch 2 D N N Fetch 3 D R P W N = No Operation D = Decode the instruction	NOP ;Bubble in Pipeline MOWVFPORTB
Fetch 2 D N N Fetch 3 D R P V N N N N = No Operation D = Decode the instruction R = Read the operand D = Decode	NOP ;Bubble in Pipeline MOWVF PORTB

Example 4-1

Write a test program for the PIC18 chip to toggle all the bits of PORTB, PORTC, and PORTD every 1/4 of a second. Assume a crystal frequency of 4 MHz.

Solution:

```
;tested with MPLAB for the PIC18F458 and XTAL = 4 MHz
list P=PIC18F458
#include P18F458.INC
R1 equ 0x07
```

R2 equ 0x08

ORG 0

	CLRF	TRISB	;make Port B an output port
	CLRF	TRISC	;make Port C an output port
	CLRF	TRISD	;make Port D an output port
	MOVLW	0x55	;WREG = 55h
	MOVWF	PORTB	; put 55h on Port B pins
	MOVWF	PORTC	;put 55h on Port C pins
	MOVWF	PORTD	; put 55h on Port D pins
L3	COMF	PORTB, F	;toggle bits of Port B
	COMF	PORTC, F	;toggle bits of Port C
	COMF	PORTD, F	;toggle bits of Port D
	CALL	QDELAY	;quarter of a second delay
	BRA	L3	ator and a second second second states and a second s

```
;-----1/4 SECOND DELAY
QDELAY
       MOVLW D'200'
       MOVWF R1
D1
       MOVLW D'250'
       MOVWF R2
D2
       NOP
       NOP
       DECF R2, F
       BNZ D2
       DECF R1, F
       BNZ D1
       RETURN
       END
Calculations:
4 MHz / 4 = 1 MHz
1 / 1 \text{ MHz} = 1 \mu \text{s}
Delay = 250 \times 200 \times 5 MC \times 1 \mu s = 250,000 \mu s (if we include the overhead, we will
have 250,800. See Example 3-17 in the previous chapter.)
```

Use the MPLAB simulator to verify the delay size.

I/O Ports and Bit-Addressability

• To access individual bits of the port without altering the rest of the bits in the port.

Instruction		Function	
BSF	fileReg,bit	Bit Set fileReg (set the bit: $bit = 1$)	
BCF	fileReg,bit	Bit Clear fileReg (clear the bit: $bit = 0$)	
BTG	fileReg,bit	Bit Toggle fileReg (complement the bit)	
BTFS	C fileReg,bit	Bit test fileReg, skip if clear (skip next instruction if $bit = 0$)	
BTFS	S fileReg,bit	Bit test fileReg, skip if set (skip next instruction if bit = 1)	

Table 4-8: Single-Bit (Bit-Oriented) Instructions for PIC18

BSF and BCF instructions

- BSF fileReg, bit_num to set high a single bit of a given fileReg.
- BCF fileReg, bit_num to clear a single bit of a given fileReg.

Example 4-2

An LED is connected to each pin of Port D. Write a program to turn on each LED from pin D0 to pin D7. Call a delay module before turning on the next LED.

Solution:

Example 4-3

Write the following programs:

- (a) Create a square wave of 50% duty cycle on bit 0 of Port C.
- (b) Create a square wave of 66% duty cycle on bit 3 of Port C.

Solution:

(a) The 50% duty cycle means that the "on" and "off" states (or the high and low portions of the pulse) have the same length. Therefore, we toggle RC0 with a time delay between each state.

Another way to write the above program is:

	BCF	TRISC,0	;make RC0 = out
HERE	BTG	PORTC,0	; complement bit 0 of PORTC
	CALL	DELAY	; call the delay subroutine
	BRA	HERE	;keep doing it

BTFSS and BTFSC instructions

- **BTFSS** fileReg, bit_num to test the bit and skips the next instruction if it is HIGH.
- **BTFSC** fileReg, bit_num to test the bit and skips the next instruction if it is LOW.

Examp	le 4-4	10	
Write a (a) Kee (b) Wh LO	a progra ep moni en RB2 W puls	um to perform toring the RI 2 becomes H e to RD3.	n the following: B2 bit until it becomes HIGH; IGH, write value 45H to Port C, and also send a HIGH-to-
Solutio	n:		
AGAIN	BSF CLRF BCF MOVLW BTFSS BRA MOVWF BSF BCF	TRISB, 2 TRISC PORTD, 3 0x45 PORTB, 2 AGAIN PORTC PORTC, 3 PORTD, 3	<pre>;make RB2 an input ;make PORTC an output port ;make RD3 an output ;WREG = 45h ;bit test RB2 for HIGH ;keep checking if LOW ;issue WREG to Port C ;bit set fileReg RD3 (H-to-L) ;bit clear fileReg RD3 (L)</pre>

In this program, instruction "BTFSS PORTB, 2" stays in the loop as long as RB2 is LOW. When RB2 becomes HIGH, it skips the branch instruction to get out of the loop, and writes the value 45H to Port C. It also sends a HIGH-to-LOW pulse to RD3.

Example 4-5

Assume that bit RB3 is an input and represents the condition of a door alarm. If it goes LOW, it means that the door is open. Monitor the bit continuously. Whenever it goes LOW, send a HIGH-to-LOW pulse to port RC5 to turn on a buzzer.

Solution:

Example 4-6

A switch is connected to pin RB2. Write a program to check the status of SW and perform the following:

(a) If SW = 0, send the letter 'N' to PORTD.

(b) If SW = 1, send the letter 'Y' to PORTD.

Solution:

AGAIN	BSF	TRISB,2	;make RB2 an input
	CLRF	TRISD	;make PORTD an output port
	BTFSS	PORTB,2	;bit test RB2 for HIGH
	BRA	OVER	;it must be LOW
	MOVLW MOVWF GOTO	A'Y' PORTD AGAIN	;WREG = 'Y' ASCII letter Y ;issue WREG to PORTD
OVER	MOVLW	A'N'	;WREG = 'N' ASCII letter N
	MOVWF	PORTD	;issue WREG to PORTD
	GOTO	AGAIN	;we can use BRA too

LATx Port

- Reading the status of the input.
- Reading the internal latch of the LAT register.

Instruction		Function	
ADDWF	fileReg,d	Add WREG to f	
BSF	fileReg, bit	Bit Set fileReg (set the bit: $bit = 1$)	
BCF	fileReg,bit	Bit Clear fileReg (clear the bit: $bit = 0$)	
COMF	fileReg,d	Complement f	
INCF	fileReg,d	Increment f	
SUBWF	fileReg,d	Subtract WREG from f	
XORWF	fileReg,d	Exclusive-OR WREG with f	

Table 4-10: Some of the Read-Modify-Write Instructions

Figure 4-8. LATx Register Role in Reading a Port or Latch

