
嵌入式系統

微控器介紹

Microcontroller (微處理器)

Embedded System (嵌入式系統)

Embedded System (嵌入式系統)

Microcontroller (微處理器)

 "Peripheral Interface Controller" made by Microchip
Technology

 8-bit ALU

//upload.wikimedia.org/wikipedia/en/9/99/Microchip_logo.svg
//upload.wikimedia.org/wikipedia/commons/4/4c/PIC_microcontrollers.jpg

Microcontroller (微處理器)

1-1 TURING MODEL

The idea of a universal computational

device was first described by Alan Turing

in 1937. He proposed that all computation

could be performed by a special kind of a

machine, now called a Turing machine.

He based the model on the actions that

people perform when involved in

computation. He abstracted these actions

into a model for a computational machine

that has really changed the world.

Data processors

Before discussing the Turing model, let us define a

computer as a data processor. Using this definition, a

computer acts as a black box that accepts input data,

processes the data, and creates output data (Figure 1.1).

Although this model can define the functionality of a

computer today, it is too general. In this model, a pocket

calculator is also a computer (which it is, in a literal sense).

Figure 1.1 A single purpose computing machine

Programmable data processors

The Turing model is a better model for a general-purpose

computer. This model adds an extra element to the specific

computing machine: the program. A program is a set of

instructions that tells the computer what to do with data.

Figure 1.2 shows the Turing model.

Figure 1.2 A computer based on the Turing model

Figure 1.3 The same program, different data

Figure 1.4 The same data, different programs

The universal Turing machine

A universal Turing machine, a machine that can do any

computation if the appropriate program is provided, was the

first description of a modern computer. It can be proved that

a very powerful computer and a universal Turing machine

can compute the same thing. We need only provide the data

and the program—the description of how to do the

computation—to either machine. In fact, a universal Turing

machine is capable of computing anything that is

computable.

1-2 VON NEUMANN MODEL

Computers built on the Turing universal machine store

data in their memory. Around 1944–1945, John von

Neumann proposed that, since program and data are

logically the same, programs should also be stored in

the memory of a computer.

Computers built on the von Neumann model divide the

computer hardware into four subsystems: memory,

arithmetic logic unit, control unit, and input/output

(Figure 1.5).

Four subsystems

Figure 1.5 The von Neumann model

The von Neumann model states that the program must be

stored in memory. This is totally different from the

architecture of early computers in which only the data was

stored in memory: the programs for their task was

implemented by manipulating a set of switches or by

changing the wiring system.

The memory of modern computers hosts both a

program and its corresponding data. This implies that both

the data and programs should have the same format, because

they are stored in memory. In fact, they are stored as binary

patterns in memory — a sequence of 0s and 1s.

The stored program concept

A program in the von Neumann model is made of a finite

number of instructions. In this model, the control unit

fetches one instruction from memory, decodes it, then

executes it. In other words, the instructions are executed one

after another. Of course, one instruction may request the

control unit to jump to some previous or following

instruction, but this does not mean that the instructions are

not executed sequentially. Sequential execution of a program

was the initial requirement of a computer based on the von

Neumann model. Today’s computers execute programs in

the order that is the most efficient.

Sequential execution of instructions

1-3 COMPUTER COMPONENTS

We can think of a computer as being made up of three

components: computer hardware, data, and computer

software.

Computer hardware today has four components under the

von Neumann model, although we can have different types

of memory, different types of input/output subsystems, and

so on. We discuss computer hardware in more detail in

Chapter 2.

Computer hardware

The von Neumann model clearly defines a computer as a

data processing machine that accepts the input data,

processes it, and outputs the result.

Data

The main feature of the Turing or von Neumann models is

the concept of the program. Although early computers did

not store the program in the computer’s memory, they did

use the concept of programs. Programming those early

computers meant changing the wiring systems or turning a

set of switches on or off. Programming was therefore a task

done by an operator or engineer before the actual data

processing began.

Computer software

Figure 1.6 Program and data in memory

Figure 1.7 A program made of instructions

0-28

Terminology

• Algorithm: A set of steps that defines how a

task is performed

• Program: A representation of an algorithm

• Programming: The process of developing a

program

• Software: Programs and algorithms.

• Hardware: Equipment

0-29

Figure 0.4 The Mark I computer

1-4 HISTORY

In this section we briefly review the history of computing

and computers. We divide this history into three periods.

Mechanical machines (before 1930)

During this period, several computing machines were

invented that bear little resemblance to the modern concept

of a computer.

 In the 17th century, Blaise Pascal, a French mathematician and

philosopher, invented Pascaline.

 In the late 17th century, a German mathematician called Gottfried

Leibnitz invented what is known as Leibnitz’Wheel.

The first machine that used the idea of storage and programming

was the Jacquard loom, invented by Joseph-Marie Jacquard at the

beginning of the 19th century.

 In 1823, Charles Babbage invented the Difference Engine. Later,

he invented a machine called the Analytical Engine that parallels

the idea of modern computers.

 In 1890, Herman Hollerith, working at the US Census Bureau,

designed and built a programmer machine that could automatically

read, tally, and sort data stored on punched cards.

The birth of electronic computers (1930–1950)

Between 1930 and 1950, several computers were invented

by scientists who could be considered the pioneers of the

electronic computer industry.

The early computers of this period did not store the program

in memory—all were programmed externally. Five

computers were prominent during these years:

ABC

 Z1

 Mark I.

 Colossus

 ENIAC

Early electronic computers

The first computer based on von Neumann’s ideas was made

in 1950 at the University of Pennsylvania and was called

EDVAC. At the same time, a similar computer called

EDSAC was built by Maurice Wilkes at Cambridge

University in England.

Computers based on the von Neumann model

Computer generations (1950–present)

Computers built after 1950 more or less follow the von

Neumann model. They have become faster, smaller, and

cheaper, but the principle is almost the same. Historians

divide this period into generations, with each generation

witnessing some major change in hardware or software (but

not in the model).

The first generation (roughly 1950–1959) is characterized

by the emergence of commercial computers.

First generation

Second-generation computers (roughly 1959–1965) used

transistors instead of vacuum tubes. Two high-level

programming languages, FORTRAN and COBOL invented

and made programming easier.

Second generation

The invention of the integrated circuit reduced the cost and

size of computers even further. Minicomputers appeared on

the market. Canned programs, popularly known as software

packages, became available. This generation lasted roughly

from 1965 to 1975.

Third generation

The fourth generation (approximately 1975–1985) saw the

appearance of microcomputers. The first desktop calculator,

the Altair 8800, became available in 1975. This generation

also saw the emergence of computer networks.

Fourth generation

This open-ended generation started in 1985. It has witnessed

the appearance of laptop and palmtop computers,

improvements in secondary storage media (CD-ROM, DVD

and so on), the use of multimedia, and the phenomenon of

virtual reality.

Fifth generation

© 2007 Pearson Addison-Wesley. All rights reserved 0-38

Computer Architecture

• Central Processing Unit (CPU) or processor

– Arithmetic/Logic unit versus Control unit

– Registers

• General purpose

• Special purpose

• Bus

• Motherboard

© 2007 Pearson Addison-Wesley. All rights reserved 0-39

Figure 2.1 CPU and main
memory connected via a bus

© 2007 Pearson Addison-Wesley. All rights reserved 0-40

Stored Program Concept

A program can be encoded as bit patterns and

stored in main memory. From there, the CPU

can then extract the instructions and execute

them. In turn, the program to be executed can

be altered easily.

0-41

Questions & Exercises 2.1

1. What information must be the CPU supply to the main memory

circuitry to write a value into a memory cell ?

Ans: The value to be written, the address of the data in which

to write, and the command to write.

© 2007 Pearson Addison-Wesley. All rights reserved 0-42

Terminology

• Machine instruction: An instruction (or

command) encoded as a bit pattern

recognizable by the CPU

• Machine language: The set of all instructions

recognized by a machine

© 2007 Pearson Addison-Wesley. All rights reserved 0-43

Machine Language Philosophies

• Reduced Instruction Set Computing (RISC)

– Few, simple, efficient, and fast instructions

– Example: PowerPC from Apple/IBM/Motorola

• Complex Instruction Set Computing (CISC)

– Many, convenient, and powerful instructions

– Example: Pentium from Intel

CISC

CISC (pronounced sisk) stands for complex instruction set

computer (CISC). The strategy behind CISC architectures is

to have a large set of instructions, including complex ones.

Programming CISC-based computers is easier than in other

designs because there is a single instruction for both simple

and complex tasks. Programmers, therefore, do not have to

write a set of instructions to do a complex task.

RISC

RISC (pronounced risk) stands for reduced instruction set

computer. The strategy behind RISC architecture is to have a

small set of instructions that do a minimum number of

simple operations. Complex instructions are simulated using

a subset of simple instructions. Programming in RISC is

more difficult and time-consuming than in the other design,

because most of the complex instructions are simulated using

simple instructions.

© 2007 Pearson Addison-Wesley. All rights reserved 0-46

Machine Instruction Types

• Data Transfer: copy data from one location to

another

• Arithmetic/Logic: use existing bit patterns to

compute a new bit patterns

• Control: direct the execution of the program

© 2007 Pearson Addison-Wesley. All rights reserved 0-47

Figure 2.2 Adding values stored
in memory

© 2007 Pearson Addison-Wesley. All rights reserved 0-48

Figure 2.3 Dividing values stored
in memory

© 2007 Pearson Addison-Wesley. All rights reserved 0-49

Figure 2.4 The architecture of the
machine described in Appendix C

© 2007 Pearson Addison-Wesley. All rights reserved 0-50

Parts of a Machine Instruction

• Op-code: Specifies which operation to execute

• Operand: Gives more detailed information

about the operation

– Interpretation of operand varies depending on op-

code

© 2007 Pearson Addison-Wesley. All rights reserved 0-51

Figure 2.5 The composition of an
instruction for the machine in
Appendix C

© 2007 Pearson Addison-Wesley. All rights reserved 0-52

Figure 2.6 Decoding the
instruction 35A7

© 2007 Pearson Addison-Wesley. All rights reserved 0-53

Figure 2.7 An encoded version of
the instructions in Figure 2.2

© 2007 Pearson Addison-Wesley. All rights reserved 0-54

Program Execution

• Controlled by two special-purpose registers

– Program counter: address of next instruction

– Instruction register: current instruction

• Machine Cycle

– Fetch

– Decode

– Execute

© 2007 Pearson Addison-Wesley. All rights reserved 0-55

Figure 2.8 The machine cycle

© 2007 Pearson Addison-Wesley. All rights reserved 0-56

Figure 2.9 Decoding the
instruction B258

© 2007 Pearson Addison-Wesley. All rights reserved 0-57

Figure 2.10 The program from Figure
2.7 stored in main memory ready for
execution

© 2007 Pearson Addison-Wesley. All rights reserved 0-58

Figure 2.11 Performing the fetch
step of the machine cycle

© 2007 Pearson Addison-Wesley. All rights reserved 0-59

Figure 2.11 Performing the fetch
step of the machine cycle (cont’d)

© 2007 Pearson Addison-Wesley. All rights reserved 0-60

Communicating with Other Devices

• Controller: An intermediary apparatus that handles

communication between the computer and a device

– Specialized controllers for each type of device

– General purpose controllers (USB and FireWire)

• Port: The point at which a device connects to a

computer

• Memory-mapped I/O: CPU communicates with

peripheral devices as though they were memory cells

Connecting CPU and memory

The CPU and memory are normally connected by three

groups of connections, each called a bus: data bus, address

bus and control bus (Figure 5.12).

Figure 5.12 Connecting CPU and memory using three buses

© 2007 Pearson Addison-Wesley. All rights reserved 0-62

Figure 5.13 Connecting I/O devices to the buses

© 2007 Pearson Addison-Wesley. All rights reserved 0-63

Figure 2.13 Controllers attached
to a machine’s bus

Figure 5.14 SCSI controller

© 2007 Pearson Addison-Wesley. All rights reserved 0-65

Communicating with Other Devices
(continued)

• Direct memory access (DMA): Main memory

access by a controller over the bus

• Von Neumann Bottleneck: Insufficient bus

speed impedes performance

• Handshaking: The process of coordinating the

transfer of data between components

Figure 5.22 DMA connection to the general bus

© 2007 Pearson Addison-Wesley. All rights reserved 0-67

Communicating with Other Devices
(continued)

• Parallel Communication: Several
communication paths transfer bits
simultaneously.

• Serial Communication: Bits are transferred
one after the other over a single communication
path.

– Serial communication requires a simpler data path
than parallel communication. For example, USB
and FireWire.

